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Abstract

In recent years, collaborative and group-oriented applications and protocols are

gaining popularity. These applications typically involve communication over open net-

works, security thus is naturally an important requirement. Group key management is

one of the basic building blocks in securing group communication. Most prior research

in group key management focused on minimizing computation overhead, in particular

minimizing expensive cryptographic operations. However, the continued advances in

computing power have not been matched by a decrease in network communication

delay. Thus, communication latency, especially in high-delay long-haul networks, is

increasingly dominating the key setup latency, replacing computation delay as the

main latency contributor. Hence, there is a need to minimize the size of messages and

especially the number of rounds in cryptographic protocols.

Since most previously proposed group key management techniques optimize com-

putational (cryptographic) overhead, they are particularly impacted by high commu-

nication delay. In this work, we discuss and analyze a specific group key agreement

technique which supports dynamic group membership and handles network failures,

such as group partitions and merges. This technique is very communication-efficient

and provably secure against hostile eavesdroppers as well as various other attacks

specific to group settings. Furthermore, it is simple, fault-tolerant and well-suited for

high-delay networks.

Index Terms

security, group key agreement, group communication, communication complexity, cryptographic

protocols
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I. INTRODUCTION

Secure group communication is an increasingly popular research area having received much

attention in recent years. Since most group communication takes place over the wide-open

expanse of the Internet, security is a major concern. The fundamental security challenge revolves

around secure and efficient group key management. Centralized key management methods (key

distribution) are appropriate for 2-party (e.g., client-server or peer-to-peer) communication as well

as for large multicast groups. However, many collaborative group settings (e.g., conferencing,

white-boards, shared instruments, and command-and-control systems) require distributed key

management techniques.

The majority of research in group key agreement (one way of implementing distributed

group key management) was mainly concerned with increasing the security while minimizing

cryptographic computation cost. It has been long held as an incontrovertible fact that heavy-

weight computation — such as large number arithmetic that forms the basis of many modern

cryptographic algorithms — is the greatest burden imposed by security protocols. However,

the continuing increase in computation power of modern workstations speed up the heavy-

weight cryptographic operations. For example, 4 years ago, a top-of-the-line RISC workstation

performed a
�����

-bit modular exponentiation in around
���

ms. Four years later, a � �	� MHz

Pentium III PC (priced at
��
��

-th of the old RISC workstation) performs the same operation in

under
�

ms.

In contrast, communication latency has not improved appreciably. Network devices and com-

munication lines have become significantly faster and cheaper. The communication (especially

via the Internet) has become both accessible and affordable which resulted in drastic increase

in the demand for network bandwidth. While computation power and bandwidth are increasing,

network delay has the lower bound dictated by the speed of light.

Consequently, the half-around-the-world packet round trip delay is likely to remain constant

(at least for terrestrial communication). In addition, inter-planetary networking is not too far

off in the future. Consider, for instance, the communication delay with a Mars Rover or other

space exploration devices. More concretely, collaborative work groups where the members are

dispersed across continents, will expect considerable communication latency and would thus

benefit from protocols that minimize communication rounds. Similarly, group teleconferences
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are becoming increasingly popular.

The bottleneck shift from computation to communication latency prompts us to look at

cryptographic protocols in a different light: allowing more liberal use of cryptographic operations

while attempting to reduce the communication overhead. The latter includes both round and

message complexity. Communication overhead is especially relevant in a peer group setting

since group members can be spread throughout a large network, e.g., the global Internet.

We consider a protocol first proposed by Steer et al. in 1988 [27]. It is one of the first group

key agreement protocols. This protocol extends the 2-party Diffie-Hellman key exchange and

supposes the formation of a secure static group. This protocol — referred to as STR (short for

Skinny TRee) hereafter — involves heavy computation and communication requirements: �������
communication rounds and ������� cryptographic operations are necessary to establish a shared

key in a group of � members. We extend it to deal with dynamic groups and network failures

in a communication-efficient manner. Concretely, we construct an entire group key management

protocol suite that is particularly efficient in a WAN environment where network delay is high.

The remainder of this paper is organized as follows. Section II explains our assumptions

and requirements for the reliable group communication system over wide area network, and

cryptographic requirements of group key agreement schemes. Notations used in the rest of

this paper are introduced in Section III and the actual protocol suite is described in Section IV.

Section V considers the security, complexity, and implementation issues, and performance of STR

is discussed in Section VI. The summary of related work appears in Section VII and conclusions

are appeared in Section VIII. Security argument of the proposed protocols are provided in

Appendix .

II. RELIABLE GROUP COMMUNICATION AND GROUP KEY AGREEMENT

In this section, we set the stage for the rest of the paper with a brief overview of the notable

features of reliable group communication and group key agreement.

As noted earlier, many current collaborative and distributed applications require a reliable

group communication platform. In addition, many group communication applications require

security services which are built atop secure group key management. This dependency is mutual

since practical group key agreement protocols themselves rely on the underlying group communi-

cation semantics for protocol message transport and strong membership semantics. Implementing
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multi-party and multi-round cryptographic protocols without such support is foolhardy as, in the

end, one winds up reinventing reliable group communication tools.

A. Reliable Group Communication Semantics

Many modern collaborative and distributed applications require a reliable group communi-

cation platform. Current reliable group communication toolkits generally provide one (or both)

of two strong group communication semantics: Extended Virtual Synchrony (EVS) [22] and

View Synchrony (VS) [15]. Both semantics guarantee that: 1) group members see the same set

of messages between two sequential group membership events, and, 2) the sender’s requested

message order (e.g., FIFO, Causal, or Total) is preserved. VS offers a stricter guarantee than

EVS: Messages are delivered to all recipients in the same membership as viewed by the sender

application when it originally sent the message. In the context of this paper we require the

underlying group communication to provide VS. However, we stress that VS is needed for the

sake of fault-tolerance and robustness; the security of our protocols is in no way affected by

the lack of VS. More details on the interaction of key agreement protocols and reliable group

communication are addressed in [1].

B. Communication Delay

Due to the reliable group communication platform, network delay is amplified by the necessary

acknowledgments between the group members. The speed of light puts a lower bound on the

minimum network delay. For example, a laser pulse that travels through a fiber optic cable takes
� � �

ms to travel from New York to San Francisco, � ���
ms from Paris to San Francisco, and

� � �
ms from London to Sydney. In practice, networks today are about

�
to

�
times slower than

the lower bound.

To put this into perspective, an 850MHz Pentium III PC performs a single 512-bit modular

exponentiation (one of the most expensive, but most basic public key primitives) in under 1 ms.

Moreover, the speed of computers continue to increase. Comparing this with the WAN network

delay, it is clear that reducing the number of communication rounds is much more important

in the long run for an efficient group key agreement scheme than reducing the computation

overhead.
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C. Group Key Agreement

A comprehensive group key agreement solution must handle adjustments to group secrets

subsequent to all membership change operations in the underlying group communication system.

The following membership changes are considered: We distinguish among single and multiple

member operations. We also distinguish between additive and subtractive member operations.

Single member changes include member join or leave, and multiple member changes include

group merge and group partition.

� Join occurs when a prospective member wants to join a group

� Leave occurs when a member wants to leave (or is forced to leave) a group. There might

be different reasons for member deletion such as voluntary leave, involuntary disconnect

or forced expulsion. We believe that group key agreement must only provide the tools to

adjust the group secrets and leave the rest up to the local security policy.

� Partition occurs when a group is split into smaller groups. A group partition can take place

for several reasons, two of which are fairly common:

1) Network failure – this occurs when a network event causes disconnectivity within the

group. Consequently, a group is split into fragments some of which are singletons

while others (those that maintain mutual connectivity) are sub-groups.

2) Explicit (application-driven) partition – this occurs when the application decides to

split the group into multiple components or simply exclude multiple members at once.

� Merge occurs when two or more groups merge to form a single group (a group merge may

be voluntary or involuntary):

1) Network fault heal – this occurs when a network event causes previously disconnected

network partitions to reconnect. Consequently, groups on all sides (and there might

be more than two sides) of an erstwhile partition are merged into a single group.

2) Explicit (application-driven) merge – this occurs when the application decides to merge

multiple pre-existing groups into a single group. (The case of simultaneous multiple-

member addition is not covered.)

At first glance, events such as network partitions and fault heals might appear infrequent and

dealing with them might seem to be a purely academic exercise. In practice, however, such

events are common owing to network misconfigurations and router failures. Moser et al. present
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compelling arguments in support of these claims [22]. Hence, dealing with group partitions and

merges is a crucial component of group key agreement.

In addition to the aforementioned membership operations, periodic refreshes of group secrets

are advisable so as to limit the amount of ciphertext generated with the same key and to recover

from potential compromises of members’ contributions or prior session keys.

D. Cryptographic Properties

In this section we summarize the desired properties for a secure group key agreement protocol.

Following the model of [18], we define four such properties:

Definition 1:

� Group Key Secrecy guarantees that it is computationally infeasible for a passive adversary

to discover any group key.

� Forward Secrecy (Not to be confused with Perfect Forward Secrecy or PFS) guarantees

that a passive adversary who knows a contiguous subset of old group keys cannot discover

subsequent group keys.

� Backward Secrecy guarantees that a passive adversary who knows a contiguous subset of

group keys cannot discover preceding group keys.

� Key Independence guarantees that a passive adversary who knows any proper subset of

group keys cannot discover any other group key not included in the subset.

The relationship among the properties is intuitive. Backward and Forward Secrecy properties

(often called Forward and Backward Secrecy in the literature) assume that the adversary is

a current or a former group member. The other properties additionally include the cases of

inadvertently leaked or otherwise compromised group keys.

Our definition of group key secrecy allows partial leakage of information. Therefore, it would

be more desirable to guarantee that any bit of the group key is unpredictable. For this reason, we

prove a decisional version of group key secrecy in Section . In other words, decisional version

of group key secrecy guarantees that it is computationally infeasible for a passive adversary to

distinguish any group key from random number.

Other, more subtle, active attacks aim to introduce a known (to the attacker) or old key. These

are prevented by the combined use of: sender information, timestamps, unique protocol message

identifiers and sequence numbers which identify the particular protocol run.

8



All protocol messages include the following attributes:

� sender information: name of the sender, or, equivalently, signer.

� group information: unique name of the group.

� membership information: names (and other information) of current group members.

� protocol identifier: protocol being used (fixed as “STR”).

� message type: unique message identifier for each protocol message.

� key epoch: strictly increasing counter. Whenever a new membership event occurs, each

member increments key epoch. If two groups
���

and
���

merge, the resulting epoch is:
���	��
�������������� � ���	��
���� �"!#���	��
����$ �&% �

. Key epoch is the same across all current group

members. If a group member receives a protocol message with a smaller than current epoch,

it terminates the protocol (suspected replay).

� time stamp: current time. Loose time synchronization among group members is assumed.

We assume that a group member rejects any message which does not match its expectations.

Since all messages are signed, we also assume PKI for all protocol parties. Since no other long-

term secrets or keys are used, we are not concerned with Perfect Forward Secrecy (PFS) as it

is achieved trivially.

In this paper, we do not assume key authentication to be part of group key management.

All communication channels are thus considered public but authentic. The latter means that all

messages are digitally signed by the sender with some sufficiently strong public key signature

method such as DSA or RSA (and using a long-term private key).1 All receivers are required to

verify signatures on all received messages and check the aforementioned fields. Consequently,

our security model is different from some recent related work [9], [10] that does not assume

authentic channels.

III. NOTATION

We use the following notation throughout the rest of this paper:

1Furthermore, as discussed above, all protocol messages are assumed to contain: 1) sender/group information, 2) a prototol

identifier (i.e., STR here) to distinguish among multiple protocols, 3) a unique message identifier to distinguish among messages

within a protocol, and 4) a key epoch identifier to capture the instance of the protocol.
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����� number of protocol parties (group members)
� ��� group member indices:

� ���	��
���������������
��� �

-th group member;
� ��
���������������

� � ���
’s session random (secret key of leaf node

���
)

� � � � �
’s blinded session random, i.e. ��� �"!$#&%('

)+*
secret key shared among

�-,
...

� *
��)+*

blinded
)+*

, i.e. ��.�/0!$#1%('
' large prime number

� exponentiation base
243 *�5

key-tree node �
67283:9 5

Internal key-tree node at level ;
<=243 � 5

Leaf node associated with member
���

> 3 � 5
key-tree of member

�?�
@A> 3 � 5

key-tree of member
� �

including all of its blinded keys

Fig. 1 shows an example of an STR key tree. The tree has two types of nodes: leaf and internal.

Each leaf node is associated with a specific group member. An internal node BDCFE:GIH always has

two children: another (lower) internal node BDCJE:G�K � H and a leaf node L"CMENGOH . The exception is BDCME � H
which is also a leaf node corresponding to P �

. (Note that, consequently, Q � �SR � .)
Each leaf node L"CMENGOH has a session random Q G chosen and kept secret by P G . The blinded

version thereof is T+Q G �VUXW�Y4Z�["\ � . Every internal node BIC E ]^H has an associated secret key R ]
and a public blinded key (bkey) T R ] �_Ua`�bcZ�[d\�� . The secret key R G � e	f � � is the result of a

Diffie-Hellman key agreement between the node’s two children ( R � is an exception and is equal

to Q G .), which is computed recursively as follows:

R G � ��T R G�K � � W�Y Z�["\ � � � TgQ G � ` YOh
� Z-[d\ � �iU W�Y ` YOh � Z�["\ � if eAf �

.
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Fig. 1. Notation for STR
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The group key in Fig. 1 is the key associated with the root node: R�� � U W��������
	 �
$
�
�

We note that the root (group) key is never used directly for the purposes of encryption,

authentication or integrity. Instead, such special-purpose sub-keys are derived from the root key,

e.g., by applying a cryptographically secure hash function to the root key. All bkeys T R G are

assumed to be public.

The basic key agreement protocol is as follows. We assume that all members know the structure

of the key tree and their initial position within the tree. (There are many ways to order members

unambiguously.) Furthermore, each member knows its session random and the blinded session

randoms of all other members. The two members P �
and P �

can first compute the group key

corresponding to BDCME � H . P �
computes:

R � � ��T+Q � � W
� Z�["\ � � U W � W $ Z-[d\ � ! T R � � UX` $ Z�["\ �

R�� � ��T+Q � � `
$ Z�["\ � ! T R� � U ` � Z�["\ �

�����
R� � ��T+Q � � `�� h � Z�["\ �

Next, P �
broadcasts all bkeys T R G with

��� e ����� �
. Armed with this message, every

member then computes R�� as follows. (As mentioned above, members P �
and P �

derive the

group key without additional broadcasts.) Any P G (with eAf �
) knows its session random Q G and

T R G�K � from the broadcast message. Hence, it can derive R G � T R G�K � W�Y Z�["\ � . It can then compute

all remaining keys recursively up to the group key from the public blinded session randoms:
R G � T+Q G ` YIh

� Z-[d\ � ( e ���
).

Following every membership change, all members independently update the key tree. Since we

assume that the underlying group communication system provides view synchrony (see Section II-

A), all members who correctly execute the protocol recompute an identical key tree after any

membership event. The following proposition describes the minimal requirement for a group

member to compute the group key:

Proposition 1: If all members know the blinded session randoms of all other members, at

least two members can compute the group key.

This follows directly from the recursive definition of the group key. In other words, both P �

and P �
(the members at the lowest leaf nodes) can obtain the group key by computing pairwise

keys recursively and using blinded session randoms of other members.
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Proposition 2: Any member can compute the group key, if it knows: 1) its own secret share,

2) the bkey of its sibling subtree, and, 3) blinded session randoms of members higher in the

tree.

Proof: This also follows from the definition of the group key. To compute the group key,

member P G needs 1) Q G , 2) T R G�K � , and 3) TgQ G�� � ! T+Q G�� � ! ����� ! T+Q � .

The protocols described below benefit from a special role (called sponsor) assigned to a certain

group member following each membership change. A sponsor reduces communication overhead

by performing “housekeeping” tasks that vary depending on the type of membership change.

The criteria for selecting a sponsor are described below.

IV. STR PROTOCOLS

We now describe the protocols that make up the STR key management suite: join, leave,

merge, and partition. All protocols share a common framework with the following features:

� Each group member contributes an equal share to the group key; this share is kept secret

by each group member.

� The group key is computed as a function of all current group members’ shares.

� As the group grows, new members’ shares are factored into the group key while the

remaining members’ shares (except for sponsor who changes its session random to provide

key independence) stay unchanged.

� As the group shrinks, departing members’ shares are removed from the new group key and

at least one remaining member changes its share.

� All protocol messages are signed by the sender, i.e., we assume an authenticated broadcast

channel.

� In a join or a merge, sponsor is associated with the topmost leaf node of each key tree.

� In a leave or a partition, sponsor is located immediately below the deepest leaving node.

A. Join

We assume the group has � users
� P � ! ����� ! P ��� , when the group communication system

announces the arrival of a new member. Both the new member and the prior group members

receive this notification simultaneously. The new member P � � � broadcasts a join request message

that contains its own bkey T R � � � (which is the same as its blinded session random T+Q � � � ). Upon
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Step 1: The new member broadcasts request for join
����� , T+Q � � � � U W � � ��������������������	� 
�� 
 � , ��������� ��� �

Step 2: Every member
 updates key tree by adding new member node and new root node,
 removes

��) �
,

The sponsor
���

additionally
 generates new share � � and computes

� � � � ) � � ��) �
 broadcasts updated tree

@A> 3 � 5


�� 
 ����� , � � 
 � , ��������� ����� , � ��� E � H� ������������������� ���

Step 3: Every member computes the group key using
@A> 3 � 5

Fig. 2. JOIN Protocol

receiving this message, the current group’s sponsor P � refreshes its session random, computes

T+Q � !gR ��! T R � and sends the current tree ��� E � H to P � � � with all bkeys.

Next, each member P G increments � � � % �
and creates a new root key node BDC E � H with

two children: the root node BDC E � K � H of the prior tree � G on the left and the new leaf node LdC E � H
corresponding to the new member on the right. Note that every member can compute the group

key (see Proposition 2) since:

� All existing members only need the new member’s blinded session random.

� The new member needs the blinded group key of the prior group.

In a join operation, the sponsor is always the topmost leaf node, i.e., the most recent member

in the current group. Fig. 3 shows an example of a new member P�� joining a group. To provide

forward secrecy, the sponsor P � updates its session random Q � .
As described, JOIN takes two communication rounds and five cryptographic operations to

compute the new group key (four by the sponsor and two by everyone else.) As will be discussed

in Section V-A.2, the JOIN protocol provides backward secrecy.
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Fig. 3. Tree update in JOIN

B. Leave

We again have a group of � members when a member P�� � � � � � leaves the group. If
� f �

,

the sponsor P�� is the leaf node directly below the leaving member, i.e., P�� K � . Otherwise, the

sponsor is P �
. Upon hearing about the leave event from the group communication system, each

remaining member updates its key tree by deleting the nodes LdCFE � H corresponding to P�� and its

parent node BICcE � H . The nodes above the leaving node are also renumbered. The former sibling

BIC E � K � H of P�� is promoted to replace (former) P�� ’s parent. The sponsor P�� selects a new secret

session random, computes all keys (and bkeys) just below the root node, and broadcasts ��� E � H
to the group. This information allows all members (including the sponsor) to recompute the new

group key. Fig. 4 describes the leave protocol in detail.

Fig. 5 shows that if member P � leaves the group, other members delete the leaving node along

with its parent. Then, the sponsor P � picks its new session random Q � , computes TgQ ��� !gR��	� ! T R���� ,
and broadcasts the updated tree ��� E � H . Upon receiving the broadcast, all members (including

P � ) compute the group key R� . Note that P � cannot compute the group key (even though it

knows all bkeys) since its session random is no longer part thereof.2

The LEAVE protocol takes one communication round and involves a single broadcast. The

cryptographic cost varies depending upon two factors: 1) the position of the departed member,

and 2) the position of the remaining member needing to compute the new key.

The total number of serial cryptographic operations in the leave protocol can be expressed as

2 
�� and  
�� are renumbered, and are denoted as 
 ��� and  
 ��� , respectively.
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Step 1: Every member
 updates key tree as described above,
 removes all keys and bkeys from the sponsor node to the root node

The sponsor
���

additionally
 generates new share and computes all (keys, bkeys)
 and broadcasts updated tree

@M> 3 � 5


 � 
 ��� � ��� E � H� ����������������� � ���

Step 2: Every member computes the group key using
@M> 3 � 5

Fig. 4. LEAVE Protocol
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Fig. 5. Tree update in LEAVE

(assuming � is the original group size):

�

� � � � � � % � % � � � � � % � � � � � � � % �
when

� f �

�

� � ��� when
� � � ! �

In the worst case, P � ! P �
or P � leaves the group. The cost for this leave operation is equal to

� � ��� . The expected leave cost is
� � � 
�� � % �

.

The LEAVE protocol provides forward secrecy since a former member cannot compute the

new key owing to the sponsor’s changing the session random. The protocol also provides key

independence since knowledge of the new key cannot be used to derive the previous keys; this

is, again, due to the sponsor refreshing its session random. For details of key independence, see
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Section V-A.2.

C. Partition

A network fault (or severe congestion) can cause a partition of the group. To the remaining

members, this actually appears as a concurrent leave of multiple members. With a minor modi-

fication, the LEAVE protocol can handle multiple leaving members in a single round. The only

difference is in sponsor selection. In case of a partition, the sponsor is the leaf node directly

below the lowest-numbered leaving member. (If P �
is the lowest-numbered leaving member,

the sponsor is the lowest-numbered surviving member.)

After deleting all leaving nodes, the sponsor P�� refreshes its session random (key share),

computes keys and bkeys going up the tree – as in the plain leave protocol – terminating with

the computation of U(`�� h � Z�["\ � . It then broadcasts the updated key tree � � E � H containing only

blinded values. Each member (including P�� ) can now compute the group key.
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Fig. 6. Tree update in PARTITION

Fig. 6 shows an example where the sponsor deletes all nodes of leaving members and computes

all necessary keys and bkeys in the first round. In this example, P �
is the sponsor since P �

left

the group. After picking a new session random Q � the sponsor computes R � and Ua` $ Z�["\ � , and

broadcasts the whole tree. Upon receiving this message, every member can compute the new

group key R� . Note that session randoms and blinded session randoms are renumbered as in the

leave protocol.

The computation and communication complexity of this protocol is identical to that of the

leave protocol. The same holds for its security properties.
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D. Merge

We now describe the merge protocol. We assume that, as in the join case, the communication

system simultaneously notifies all group members (in all groups) about the merge event. More-

over, reliable group communication toolkits typically include a list of all members that are about

to merge in the merge notification. More specifically, we require that each member be able to

distinguish the group it was in from the group that it is merging with. This assumption is not

unreasonable, e.g., it is satisfied in SPREAD [1].

It is natural to graft the smaller tree atop the larger tree. If any two trees are of the same

height, we can use any unambiguous ordering to decide which group joins which. (For example,

lexicographical order of the identifiers of the respective sponsors.) When merging two trees, the

lowest-numbered leaf of the smaller tree becomes the right child of a new intermediate node.

The left child of the new intermediate node becomes the root of the larger tree.

Using this technique recursively, we can merge multiple trees. R -ary merge protocol is shown

in Fig. 7.

Step 1: Each sponsor
� �

� in
> �

� for
� ���:��� )��

 broadcasts tree
@A> 3 �

�
5

� �
� ��� E � G H������������������� � � .��� , 
 �

Step 2: Every member
 updates key tree by merging all trees,
 removes all keys and bkeys from the sponsor node,

The sponsor
� �

(additionally)
 generates new share � � and computes

� � � ,
 computes all keys and bkeys from its parent to the node just below root,
 broadcasts updated tree

@A> 3 � 5

� .��� , 
 � � � E � H� ����������������� � � �

Step 3: Every member computes the group key using
@M> 3 � 5

Fig. 7. MERGE Protocol
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In the first round of the merge protocol, all sponsors (members associated with topmost leaf

node in each tree) exchange their respective key trees containing all blinded session randoms.3

The highest-numbered member of the largest tree becomes the sponsor of the second round in

the merge protocol. After refreshing its session random, this sponsor computes every (key, bkey)

pair up to the intermediate node just below the root node using the blinded session randoms of

the other group members. It then broadcasts the key tree with the bkeys and blinded session

randoms to the other members. All members now have the complete set of bkeys, which allows

them to compute the new group key.
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Fig. 8. Tree update in MERGE

Fig. 8 shows an example of merging two trees. After the merge notification, the sponsors ���

and ��� broadcast their key trees containing all blinded session randoms. Upon receiving these

broadcast messages, every member in both groups reconstructs the key tree. The smaller tree

with three members is placed on top of large tree with four members. Every member generates

a new intermediate node ���	��
� and makes it the parent of the old root node ����� � � of the larger

tree and the previous leftmost leaf node ��� ��
� . Both intermediate nodes ��� ����� and ��� ���� of the

previous smaller tree then need to be renumbered as ��� ���� and ��� � � � , respectively. The new

intermediate node ������
� also becomes the child of the previous lowest intermediate node �������� .

3Bkeys do not need to be exchanged this time.
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Using the previous blinded group key at BDCJE � H of the larger group and blinded session random

T+Q	� and T+Q�� , the sponsor in the second round, P � , computes all intermediate keys and bkeys

( R � ! T R � !gR � ! T R � !+R � ! T R � ) except the root node. Finally, it broadcasts ��� E � H that contains all bkeys

and blinded session randoms up to BICcE � H . 4 Upon receipt of the broadcast, every member can

compute the group key.

In summary, the merge protocol runs in two communication rounds.

V. DISCUSSION

We now discuss security, efficiency and other practical issues related to STR key management.

A. Security

As discussed earlier in the paper, the main security requirements of group key agreement are:

group key secrecy, forward/backward secrecy, and key independence. In this section, we prove

that STR provides those four security requirements.

1) Group Key Secrecy: Before considering group key secrecy, we briefly examine key fresh-

ness. Every group key is fresh, since at least one member in the group generates a new random

key share for every membership change.5 The probability that new group key is the same as any

old group key is negligible due to bijectiveness of � ����� � function.

We note that the root (group) key is never used directly for the purposes of encryption,

authentication or integrity. Instead, special-purpose sub-keys are derived from the this key,

e.g., by applying a cryptographically secure hash function, i.e. � � � Q �	� � R���
 � is used for such

applications.

As discussed in Section II-D, decisional group key secrecy is more meaningful if sub-keys are

derived from a group key. Decisional group key secrecy of STR protocol is related to imbalanced

tree decision Diffie-Hellman assumption mentioned in Section B. This assumption ensures that

there is no information leakage other than public bkey information.

We can also derive the sub-keys based on the Shoup’s hedge technique [26] as follows:

Compute the key as: � � � Q ��� � R���
 ���� � � Q ��� � R���
 � where � is a random oracle.

4In fact, it need not broadcast unchanged bkeys, � �� ��� �� $�� �� ��� .
5Recall that insider attacks are not our concern. This excludes the case when an insider intentionally generates non-random

numbers.

19



It follows that, in addition to the security in the standard model based on imbalanced Tree

Decision Diffie-Hellman assumption, the derived key is also secure in the random oracle model

[6] based on the imbalanced Tree Computational Diffie-Hellman assumption.

2) Key Independence: We now give an informal proof that STR satisfies forward and backward

secrecy, or equivalently key independence. In order to show that STR provides key independence,

we only need to show that the former (prospective) member’s view of the current tree is

exactly the same as the passive adversary’s view. This is because the advantage of the former

(prospective) member is the same as the passive adversary, and the view of the passive adversary

does not reveal any information about the group key by Theorem 3.

We first consider backward secrecy, which states that a new member who knows the current

group key cannot derive any previous group keys. Let P � � � be the new member. The sponsor

for the join event changes its session random and, consequently, root key of the current key tree

is changed. Therefore, the view of P � � � with respect to the prior key trees is exactly the same

as the view of an outsider. Hence, the new member does not gain any advantage compared to a

passive adversary.

This argument can be easily extended to a merge of two or more groups. When a merge

happens, the sponsor at the top leaf node of the largest tree changes its session random. Therefore,

each member’s view on other member’s tree is exactly the same as the view of a passive adversary.

This shows that the newly merged member has exactly the same advantage about any of the old

key tree as a passive adversary.

Now we consider forward secrecy, meaning that a passive adversary who knows a contiguous

subset of old group keys cannot discover subsequent group keys. Here, we consider partition and

leave at the same time. Suppose P�� is a former group member who left the group. Whenever

subtractive event happens, the sponsor located immediately below the deepest leaving leaf node

refreshes its session random, and, therefore, all keys known to leaving members will be changed

accordingly. Therefore, P�� ’s view is exactly the same as the view of the passive adversary.

This proves that STR provides decisional version of key independence.

3) Other Security Properties: As discussed in Section II-D, all protocol messages consist

of sender information, group information, membership information, message type, key epoch,

and time stamp. We also assumed that receiver rejects any message that does not match its

expectation and all channels are authentic (i.e. all messages are signed). Therefore, we claim

20



that STR provides implicit key authentication.

Furthermore, the independence of the session key from any long-term keys guarantees PFS.

Finally, the loss of a group key does not endanger any other session. Therefore, STR is secure

against a known key attack.

B. Practical Considerations

1) Protocol Unification: Although described separately in Section IV, the four STR operations

(join, leave, merge and partition) actually represent different strands of a single protocol. We

justify this claim with an informal argument below.

Obviously, join and leave are special cases of merge and partition, respectively. We observed

that merge and partition can be collapsed into a single protocol, since, in either case, the key

tree changes and the remaining group members lack some number of bkeys that prevents them

from computing the new root key. In a partition, the remaining members (in any surviving group

fragment) reconstruct the tree where some bkeys are missing. In case of a merge, let us suppose

that R groups (Tree � � through � ` ) are merging. After the first round of the merge protocol, all

members reconstruct the new tree unambiguously and independently where all bkeys from the

sponsor node up to the root node are missing similar to the partition protocol. The sponsor in

merge is located at the topmost leaf node of the highest key tree. As discussed in Sections IV-D

and IV-C, every member reconstructs the key tree after a partition and a merge in one and two

rounds, respectively.

From these outlines of the merge and partition protocol, we can find some similarities:

� Whenever new membership event happens, all current group members first reconstruct the

key tree.

� The resulting key tree has missing bkeys from the parent node of the sponsor to the root

node as well as the sponsor’s blinded session random.

� The sponsor generates new session random and computes all keys and bkeys from its parent

node up to the node just below the root node. It then broadcasts the whole key tree containing

only bkeys and blinded session randoms.

� Using the broadcast message, any member can compute the group key.

This apparent similarity between partition and merge allows us to combine the protocols stem-

ming from all membership events into a single, unified protocol. Fig. 9 shows the pseudocode.
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The incentive for this is threefold. First, unification allows us to simplify the implementation and

minimize its size. Second, the overall security and correctness are easier to demonstrate with a

single protocol. Third, we can now claim that (with a slight modification) the STR protocol is

self-stabilizing and fault-tolerant as discussed below.

1 receive msg (msg type = membership event)

2 construct new tree

3 while there are missing bkeys

4 if ((I can compute any missing keys and I am the sponsor) ||

5 (sponsor computed a key))

6 while(1)

7 compute missing (key, bkey) pairs

8 if (I cannot compute)

9 break

10 endif

11 if (others need my information)

12 broadcast new bkeys

13 endif

14 endif

15 endwhile

Fig. 9. Unified protocol pseudocode

2) Cascaded Events: Since network disruptions are random and unpredictable, it is natural

to consider the possibility of so-called cascaded membership events. (In fact, cascaded events

and their impact on group protocols are often considered in group communication literature, but,

alas, not often enough in the security literature.) A cascaded event occurs, in its simplest form,

when one membership change occurs while another is being handled. Event here means any of:

join, leave, partition, merge or a combination thereof. For example, a partition can occur while

a prior partition is being dealt with, resulting in a cascade of size two. In principle, cascaded

events of arbitrary size can occur if the underlying network is highly volatile.

As discussed before, STR protocol requires at most two rounds. One might wonder why

robustness against cascaded failure is important for only a 2-round protocol. We give couple of
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examples that illustrate (potential) failure of the STR protocol.

� Suppose a network partition breaks a group � into groups � � and � � . The sponsor P�� �

needs to compute missing keys and bkeys. While computing these keys, another partition

breaks � � into two other groups �
��

(containing P�� � ) and �
��
. Based on the partition protocol

description, the members in group �
��

still wait for the message from P�� � to process the

previous partition.

� Suppose a merge event happens whereby groups � � and � � to form a single group � . The

sponsors P�� � and P�� $ in each group broadcast their tree information. In the next round,

while a sponsor computes the missing bkeys, a member P �
originally in group �

��
leaves

the group. If the leaving member is the sponsor, the STR protocol cannot proceed for every

other member is waiting for the message from this member.

The protocols described above cannot cope with these situations. However, we can modify

the protocol in Fig. 9 to handle such cascaded events.

We claim that the STR protocol is self-stabilizing, i.e., robust against cascaded network events.

This is quite rare as most multi-round cryptographic protocols are not geared towards handling of

such events. In general, self-stabilization is a very desirable feature since lack thereof requires

extensive and complicated protocol ”coating” to either 1) shield the protocol from cascaded

events, or 2) harden it sufficiently to make the protocol robust with respect to cascaded events

(essentially, by making it re-entrant).

The high-level pseudocode for the self-stabilizing protocol is shown in Fig. 10. The changes

from Fig. 9 are minimal (lines 15 – 18 are added).

VI. PERFORMANCE ANAYSIS AND COMMUNICATION EFFICIENCY

A. Performance Comparison

We analyze both communication and computation costs for join, leave, merge and partition

protocols. In doing so, we focus on the number of: rounds, messages, and serial exponentiations.

We distinguish among serial and total measures. The serial measure assumes parallelization

within each protocol round and represents the greatest cost incurred by any participant in a

given round. The total measure is the sum of all participants’ costs in a given round.

We compare STR protocols to TGDH that has been known to be most efficient in both

communication and computation. For detailed comparison with other group key agreement
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1 receive msg (msg type = membership event)

2 construct new tree

3 while there are missing bkeys

4 if ((I can compute any missing keys and I am the sponsor) ||

5 (sponsor computed a key))

6 while(1)

7 compute missing (key, bkey) pairs

8 if (I cannot compute)

9 break

10 endif

11 if (others need my information)

12 broadcast new bkeys

13 endif

14 endif

15 receive msg

16 if (msg type = membership event)

17 construct new tree

18 endif

19 endwhile

Fig. 10. Self-stabilizing protocol pseudocode

protocols such as GDH.3 [28], BD (Burmester-Desmedt) [11] can be found at [2].

Table I summarizes the communication and computation costs of both protocols. The numbers

of current group members, merging members, merging groups, and leaving members are denoted

as: � !�� !gR and � , respectively.

The height of the key tree constructed by the TGDH protocol is � . The overhead of the TGDH

protocol depends on the tree height, the balancedness of the key tree, the location of the joining

tree, and the leaving nodes. In our analysis, we assume the worst-case configuration and list the

worst-case cost for TGDH.

The number of modular exponentiations for a leave event in STR depends on the location of

the deepest leaving node. We thus compute the average cost, i.e., the case when the
� � -th node

leaves the group. For all other events and protocols, exact costs are shown.
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TABLE I

COMMUNICATION AND COMPUTATION COSTS

Communication Computation

Round Message Exponentiation

TGDH

Join 2 3 �������
Leave 1 1 �������
merge �
	��� $ ������� ��� �������

Partition ���������
	��� $�� ����� � �! �������"� � � � � $ �# �������

STR

Join 2 3 4

Leave 1 1 � �$ �$�
Merge 2 �%��� �&�'�(�

Partition 1 1 � �$ �$�

In the current implementations of TGDH and STR, all group members recompute bkeys that

have already been computed by the sponsors. This provides a weak form of key confirmation,

since a user who receives a token from another member can check whether his bkey computation

is correct. This computation, however, can be removed for better efficiency, and we consider this

optimization when counting the number of exponentiations.

It is clear that computation cost of STR is fairly high: � � � � for merge and ����� � for subtractive

events. However, as mentioned in Section I, this high cost becomes negligible when STR is used

in a high-delay wide-area network. Evidence to support this claim can be found in [2].

B. Lower Bound for Dynamic Group Key Agreement

In [5], Becker and Wille proved the lower bound for communication complexity of static

group key agreement, i.e. how � group members share a common group key without consid-

ering subsequent additive/subtractive events. When assuming bradcast channel, they prove the

following theorem:

Theorem 1 (Becker and Wille): Let ) be a static group key agreement protocol for � parties

allowing broadcasts.

1) For the number of messages * �+) � required by ) , it holds that * �,) �.- � �
2) For the number of rounds / �+) � required by ) , it holds that / �+) �.- � �

However, it is commonly assumed that at least 2 rounds are required for group key agreement.
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Assumption 1: Let ) be a static group key agreement protocol for � parties allowing broad-

casts when � f �
. Using the same notation above, / �+) � - � �

Indeed, finding an one-round group key agreement is a well-known open problem [8]. When

group size is 3, there exists one round group key agreement based on Bilinear map using Weil

paring [17]. This work shows that we can design one round group key agreement protocol for

any � , if multilinear map exists. Unfortunately, existence of multilinear map is unknown [8].

Based on Theorem 1 and Assumption 1, we can easily find the bound for communication

complexity of dynamic group key agreement.

Theorem 2 (Communication complexity of dynamic group key agreement): Let ) be a static

group key agreement protocol for � ( � f �
) parties allowing broadcasts.

� For any subtractive events / �+) � - �
and * �,) � - �

, when the number of remaining group

members is greater than 2.

� For any additive events / �,) � - �
and * �,) �.- R , when R groups are merging.6

Proof: [Sketch] In a contributory group key agreement, group key is determined by partici-

pating entities contribution. Furthermore, to provide key independence each group key should be

independent from the previous keys/future group keys. In other words, for any additive/subtractive

events, at least one member in the group has to change its random secret. Therefore, at least one

message (and one round) is required to let others know about this change. This provides rough

lower bounds of communication for both additive/subtractive events:

/ �,) �.- �
and * �,) �.- � � (1)

Now let us tighten the bound based on each event. In case of subtractive events, we are done

by the rough bound described in Equation 1.

So remainder of this proof will focus on finding tighter lower bound for additive events. We

will consider only merge of R groups, since join is a special case of merge when one group has

only one user. One most important observation for merge is that merge of R groups can be seen

as a static group key agreement of R members. If this is the case, then we are done since our

lower bounds for additive events are same as those for static group key agreement provided in

Theorem 1 and Assumption 1.

6Clearly, this also covers the case of a single member joining the group, thus � is equal to 2.
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Now, it remains to show that merge of R groups is equivalent to the static group key agreement

of R members. Since there are R groups merging, it is obvious that at least R messages need to

be exchanged to share each group information. This is because the group key is a function of

all group members’ contribution and each group information contains current group members’

contribution. In fact, merge of R groups can be seen as group formation of R members whose

session random is current group key �=R and blinded key is
� � ` � Z�["\ � � where the blinded key

is never known to other group members. Therefore, lower bounds of communication for addtive

events are equvalent to those of static group key agreement. Consequently, for any additive

events of group key agreement (when R groups are involved) requires / �+) � - �
and * �+) � - R �

From the Theorem 2, communication costs of STR is near optimal (it requires one more

message than the optimal protocol does). However, it can be easily modified to achieve optimal

communication efficiency: When a merge even happens, a partition is chosen unambiguously

(such as the partition that has a group member whose alphabetical order precedes all other

members). All sponsors in other partition send tree information to the partition ( R � �
messages).

Upon receiving these messages, the sponsor in the partition can compute all required blinded

keys, and it broadcasts the whole key tree containing only blinded keys (one more message).

Finally, all members can compute the group key.

This protocol has optimal communication costs: R messages and
�

rounds. However, this has

an obvious drawback: When the group including the sponsor has only one member, whole � � �

blinded keys need to be recomputed. On the other hand, if we can choose highly populated

partition, we can save number of modular exponentiation. Therefore, in the first round of merge,

sponsor in every partition sends their tree information ( R messages) and the sponsor in the biggest

group will act as the sponsor to broadcast new set of bkeys. Note that number of round is more

sensitive for the performance of multi-round multi-party protocol than the number of message

as shown in [2].

VII. RELATED WORK

Group key management protocols come in three different flavors: contributory key agreement

protocols, centralized, decentralized group key distribution scheme, and server-based key distri-

bution protocols. Since the focus of this work is to provide common key to the dynamic peer
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group, we only consider the first two below.

A. Group Key Agreement Protocols

We begin by first summarizing the early (and theoretical) group key agreement protocols

which did not consider dynamic membership operations and only supported group formation.

The earlist attempt to obtain contributory group key agreement built upon 2-party Diffie-

Hellman (DH) is due to Ingemarsson et al. (called ING) for teleconferencing [16]. In the fist

round of ING, every member P G generates its session random
� G and computes U � Y . In the

subsequent rounds R to � � �
, P G computes

� G�� ` � � � G�K ������� � � ` K � �
� Y where

� G�K � is the message

received from P G�K � in the previous round R � �
when � is the number of group members. The

resulting group key is of the form:

� � �SU � � � $ � �
	�	�	 � � �
The ING protocol is inefficient: 1) every member has to start synchronously, 2) � � �

rounds

are required to compute a group key, 3) it is hard to support dynamic membership operations

due to its symmetricity and 4) � sequential modular exponentiations are required.

Another group key agreement developed for teleconferencing was proposed by Kim, et al. [18].

This protocol (called TGDH, for Treee-based Group Diffie-Hellman) is of particular interest since

its group key structure is similar to that of STR.

TGDH is well-suited for member leave operation since it takes only one round and � � � � � �
modular exponentiations. Member addition, however, is relatively costly since – in order to

keep the key tree balanced – the sponsor performs � � � ��� � exponentiations. Also, in the event of

partition, as many as � � � � � � rounds may be necessary to stabilize the key tree. This is where

STR offers a clear advantage.

Burmester and Desmedt construct an efficient protocol (called BD) which takes only two

rounds and three modular exponentiations per member to generate a group key [11]. This

efficiency allows all members to re-compute the group key for any membership change by

performing this protocol. However, according to [28], most (at least half) of the members need

to change their session random on every membership event. The group key in this protocol is

different from STR and TGDH:

� � �iU � � � $ � � $ � � � 	�	�	 � � � � � �
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A shortcoming of BD is the high communication overhead. It requires
� � broadcast messages

and each member needs to generate 2 signatures and verify
� � signatures.

Becker and Wille analyze the minimal communication complexity of contributory group key

agreement in general [5] and propose two protocols: octopus and hypercube. Their group key

has the same structure as the key in TGDH. For example, for eight users their group key is:

� � �SU�� ��	 �
�
�
$
	 ����� ��� � ��	 � � ��� 	 ���
�	� � �

The Becker/Wille protocols handle join and merge operations efficiently, but the member leave

operation is inefficient. Also, the hypercube protocol requires the group to be of size
� �

(for

some integer � ); otherwise, the efficiency slips.

Asokan et al. look at the problem of small-group key agreement, where the members do not

have previously set up security associations [3]. Their motivating example is a meeting where the

participants want to bootstrap a secure communication group. They adapt password authenticated

DH key exchange to the group setting. Their setting, however, is different from ours, since they

assume that all members share a secret password, whereas we assume a PKI where each member

can verify any other members authenticity and authorization to join the group.

Tzeng and Tzeng propose an authenticated key agreement scheme that is based on secure

multi-party computation [29]. This scheme also uses
��
��

broadcast messages. Although the

cryptographic mechanisms are quite elegant, a shortcoming is that the resulting group key does

not provide perfect forward secrecy (PFS). If a long-term secret key is broken and/or published,

all previous and future group keys (where that key was used) are also revealed.

Steiner et al. first address dynamic membership issues [4],[28] in group key agreement and

propose a family of Group Diffie Hellman (GDH) protocols based on straight-forward extensions

of the two-party Diffie-Hellman. GDH provides contributory authenticated key agreement, key

independence, key integrity, resistance to known key attacks, and perfect forward secrecy. Their

protocol suite is fairly efficient in leave and partition operation, but the merge protocol requires

as many rounds as the number of new members to complete key agreement.

Perrig extends the work of one-way function trees (OFT, originally introduced by McGrew

and Sherman [20]) to design a tree-based key agreement scheme for peer groups [23]. However,

this work does not consider group merges and partitions.
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B. Decentralized Group Key Distribution Protocols

Decentralized group key distribution protocols can be preferred to contributory group key

agreement protocols, since they rely on inexpensive symmetric key encryption technique. How-

ever, all group key distribution schemes assume secure channel that is, in practice, implemented

by public key cryptosystem (e.g. Diffie-Hellman). Furthermore, they require the leader to es-

tablish multiple secure two-party channels between itself and other group members in order to

securely distribute the new key. Maintaining such channels in dynamic groups can be expensive

since setting up each channel involves a separate two-party key agreement. When a group is

dynamic, amortized number of secure channel becomes �����
�
� . Another disadvantage is the

reliance on a single entity to generate good (i.e., cryptographically strong, random) keys.

First decentralized group key distribution scheme is due to Waldvogel et al. [12]. They propose

efficient protocols for small-group key agreement and large-group key distribution. Unfortunately,

their scheme for autonomous small group key agreement is not collusion resistant.

Dondeti et al. modified OFT (One-way Function Tree) [20] to provide dynamic server elec-

tion [14]. This protocol has same key tree structure and uses similar notations (e.g. keys, blinded

keys). Other than expensive maintainence of secure channels described above, this protocol has

expensive communication cost: Even for single join and leave, this protocol can take � � � �
rounds to complete, when � is the height of the key tree. The authors do not consider merge

and partition event, and also implementation. One advantage different from others is that their

group key does not depend on a single entity.

Rodeh et al. [24] propose a decentralized group key distribution protocol extended from LKH

protocol [30]. It tolerates network partitions and other network events. Even though this approach

cannot help incurring basic disadvantages discussed above, authors reduce the communication

and computational cost. In addition, authors use AVL tree to provide provable and efficient tree

height.

VIII. CONCLUSION

In this paper we described a provably secure contributory group key agreement protocol

(STR) optimized for communication. STR supports all dynamic peer group operations: join,

leave, merge, and partition. Furthermore, it easily handles cascaded (nested) membership events

and network failures.
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Assuming that Moore’s Law continues to hold, the computational cost of cryptographic

operations will gradually decrease. Eventually, communication latency, which has a lower-bound

dictated by the speed of light, will dominate the cost of computation in determining the running

time of group key agreement protocols. STR is already the most efficient group key agreement

protocol over high-delay wide-area networks; it will become more advantageous as processor

speeds increase.
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APPENDIX

DECISIONAL IMBALANCED GROUP DIFFIE-HELLMAN PROBLEM

A. 2-party Decision Diffie-Hellman Problem

Our proofs require a specific group setting. In this section, we introduce a specific group (
�

)

and define the 2-party Decision Diffie-Hellman (DDH) problem on
�

.

Let R be a security parameter and � be an integer. All algorithm run in probabilistic polynomial

time with R and � as inputs.

For concreteness, we consider a specific group
�

:

On input R , algorithm gen chooses at random a pair ��� ! U � where � is a
� R -bit value7, and

� and � � � � % �
are both prime. Before introducing

�
, we first consider a group

��
, which

is a group of squares modulo prime � . This group can be described more precisely as follows:

Consider an element U which is a square of a primitive element
�U of multiplicative group ���� , i.e.

U � �U � . (Without loss of generality, we may assume U�� � .) Then group
��

can be represented

as �� �
	 U G Z-[d\ ��� e��� � ! ����� �
An attractive variation of this group is to represent the elements by the integers from 0 to � � �

.

7In order to achieve the security level � h�� , the group size should be at least �
$ �

[25].
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The group operation is slightly different: Let a function
�

be defined as

� � � � �
��� �� � if � � �
� � � if � � � � � �

Using this
�

function, we can introduce the group
�

as

� � 	 � � U G Z-[d\ � � � e� ��� � �
Group operation on group

�
is defined as � 
 T � � � � 
 T � Z�["\ � � � , where ��! T  �

.

Proposition 3: Let
� � � � � U�� Z�[d\�� . Then the function

� � �
is a bijection from ��� to ��� .

Proof: To see this, suppose
� � � � � � � ��� � � 
 � . Then this can be written and

� �
	 � � � ��� �
where integer 	 �SU�� Z�[d\ � and � �SU�FZ-[d\ � . Now we can have four different cases:

� 	 � � ! � � � : In this case,
� �
	 � � 	 and

� ��� � � � and hence 	 � � . Now we have an

equation
�U � � � K  � � � Z�["\ � . Since

�U is a generator for � �� , its order (i.e.
� � ) has to divide

� � � � 
 � . This implies that � has to divide � � 
 and finally ��� 
 since
� � � ! 
 � � .

� 	 f � ! �Vf � : In this case,
� ��	 � � � � 	 and

� ��� � � � � � and hence 	 � � . Rests

are the same as above.

� 	 � � ! � f � : This case is impossible, since ��� ��� � �
and � � K����� � � �

since ��� � Z�["\ �

and 	 � � � � .

� 	 f�� ! � � � : This is also impossible by similar reasoning.

Therefore,
� � �

is an injection. It is also a surjection, since the sizes of domain and co-domain

are the same.

Proposition 4: When a distribution Q is uniform and random in
�

,
� � � � Q � is still uniform

and random in
�

, since
��� �

is bijective.

Groups of this type are also considered by Chaum [13]. It is generally assumed that DDH

is intractable in these groups [7]. More concretely, the 2-party Decision Diffie-Hellman as-

sumption on group
�

is that for all polynomial time attackers � , for all polynomials � � R �� R�� �0R f R!� , for 	 � " � � � � �
and 	 � " � � � with

� � ! � � ! � � $# �
uniformly chosen, and for

a random bit T , the following equation holds:%%'& Q � T �(� � � `*) � ) U ) U � � ) U � $ ) U �,+ � � T � � ��
�� %% � � 
 ��� R �
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B. Decisional Imbalanced Tree Group Diffie-Hellman Problem

We start with the easier problem where a key tree is completely imbalanced. Fig. 11 shows

the structure and the notation for the imbalanced tree.
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K BR
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BK /BR1 1

2BK
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nn−1
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BKn−1

BK

K /R11

Fig. 11. Notations for Imbalanced Tree

For ��� !+U ��� � � � � R � ! �  �
and 	 � ��� � ! � � ! ��� � ! � � � for � G  �

and an imbalanced key

tree � � with � leaf nodes which correspond to � G , we define the following random variables:

�

� G : e -th level key

� � � G : e -th level blinded key, i.e. U�� Y Z-[d\ �
� � G : e -th level session random chosen uniformly  # �

where
�

is the group mentioned in

the previous section. For e � �
, � G � � G .

� � � G : e -th level blinded session random, i.e. U	� Y Z�[d\�� . For e � �
, � � G � � � G .

�

� G is recursively defined as follows:

� G �SU � YOh � � Y � � � � YG�K � � � � � YOh �G
� G and � G are secret, and � � G and � � G are public. In Section IV, � � G and � � G ’s will be

publicly available, while
� G will be known to group members and � G will be known only to a

single member. The root node
� G will be used as a group key.

For � � !+U �
� � � � � R � ! �  �
and 	 � ��� � ! � � ! ����� ! � � � for � G  �

and an imbalanced

key tree � � with � leaf nodes which correspond to
� G , we can define public and secret values

collectively as below:
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� e ��� ��� ! U ! � ! 	 � � � � " � � � � G � � � e � � ��� � � � G � � � e � � �

� � U � � G � � � ��� � Z-[d\ � � � � e � � � � ��� � � � G � � � e � � �

� � U �
	 � 	 $ !+U �
	���	 	
� 	 $ ! ����� !+U � 	 � h

��� � �
	 	
� 	 $ �� � U � � !+U � $ ! ����� ! U � � �

� � � !+U ! � ! 	 ! � � � " � U � � h � � �

Since � � !+U � are obvious from the context, we omit them in view() and K(). Also for sim-

plicity, we sometimes use
� � instead of

� ��� ! 	 ! � � � . The � e ��� ��� ! 	 ! � � � represents all public

information, and the root secret key is
� ��� ! 	 ! � � � . Let the following two random variables be

defined by generating � � !+U �	� � � � � R � and choosing 	 randomly from
�

:

��� � " � � � e ��� � � ! 	 ! � � � ! 
 � and

��� � " � � � e ��� ��� ! 	 ! � � � ! � � �
The operator “ � �����  ” denotes polynomial indistinguishability as in [28].

Proposition 5: Let
�

and � be � -bit strings such that � is a random and
�

is a Diffie-

Hellman key. We say that
�

and � are polynomially indistinguishable if, for all polynomial

time distinguishers, � , the probability of distinguishing
�

and � is smaller than �
�� %

�
� � ` � � , for

all polynomial � � ��� .
The following is a main lemma (induction argument) for DITGDH problem.

Lemma 1: If DDH assumption holds and � � K � � �����  � � K � , then � � � �����  � � .
Proof: Assume that there exists a polynomial algorithm that can distinguish between � �

and � � . We will show that this algorithm can be used to distinguish � � K � and � � K � or solve

the 2-party DDH problem.

Consider the following equations when 	 � � ��� � ! � � ! ��� � ! � � K � � and � � � is a subtree rooted
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at the left child of the root node:

� � " � � � e ��� � � ! 	 ! � � � ! 
 �
� � � e ��� � � � � ! 	 � ! � � � � ! � � � K � ! � � ��! 
 �
� � � e ��� � � � � ! 	 � ! � � � � ! U � � � K � � � � � !+U � � ! 
 �

� � " � � � e ��� � � � � ! 	 � ! � � � � ! U W !+U � � ! 
 �
� � " � � � e ��� � � � � ! 	 � ! � � � � ! U W !+U � � ! U W � � �
� � " � � � e ��� � � ! 	 ! � � � ! � � � ! 	 ! � � � �

� � � e ��� � � � � ! 	 � ! � � � � ! � � � K � ! � � ��!+U � �
� K � � � � � ��� � � � � �

� � � e ��� � � � � ! 	 � ! � � � � ! U � � � K � � � � � ��� � � ! U � � !+U � � � K � � � � � ��� � � � � �
Since we can distinguish � � and � � in polynomial time, we can distinguish at least one of

( � � and � � ) or ( � � and
� � ) or (

� � and � � ).
��� � and � � : Suppose one can distinguish � � and � � in polynomial time. We will show that

this distinguisher ����� � can be used to solve DITGDH problem with height � � �
. Suppose

We want to decide whether & �� K � � � � e ��� ��� � � ! 	 � ! � � � � ! Q � � is an instance of DITGDH

problem or Q � is a random number. To solve this problem, we generate a random number

Q � � and compute U W � � . Using & �� K � and � Q � � !+U W � � � pair, we can generate a distribution

& � � � � e ��� ��� � � ! 	 � ! � � � � !+U W � !+U W � � ! 
 �
where 
 �# �

. Now we put & � as an input of ����� � . If & � is an instance of � � ( � � ), then& �� K � is an instance of � � K � ( � � K � ) by Proposition 4, respectively.

� � � and
� � : Suppose we can distinguish � � and

� � in polynomial time. We will show

that this distinguisher ����� � can be used to solve the 2-party DDH problem in group
�

.

Note that U W is an independent variable from � e ��� ��� � � ! 	 � ! � � � . Suppose we want to test

whether � U	� !+U	
 ! U	� � is a DDH triple or not. To solve this problem, we generate a key tree

� � of height � � �
with distributions 	 � . Now we generate a new distribution:

& � � � � e ��� ��� � � ! 	 � ! � � � !+U � ! U 
 ! U � � �
If & � is an instance of � � (

� � ), then � U � !+U 
 ! U � � is a valid (invalid) DDH triple, respectively.
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�

� � and � � : Suppose one can distinguish
� � and � � in polynomial time. We will show that

this distinguisher ����� � can be used to solve DITGDH problem with height � � �
. Suppose

We want to decide whether & �� K � � � � e ��� ��� � � ! 	 � ! � � � � ! Q � � is an instance of DITGDH

problem or Q � is a random number. To solve this problem, we generate a random number

Q � � and compute U W � � . Using & �� K � and � Q � � !+U W � � � pair, we generate a distribution:

& � � � � e ��� � � � � ! 	 � ! � � � � !+U W � ! U W � � ! U Q � Q � � � �

Note that we can compute U W � W � � since we know U W � and Q � � . Now we put & � as an input

of ����� � . If & � is an instance of
� � ( � � ), then & �� K � is an instance of � � K � ( � � K � ) by

Proposition 4.

Lemma 2: If the DDH assumption holds, then � � � �����  � � .
The proof is similar to the above. The only difference is that we can break the 2-party DDH

assumption using ����� � or ����� � .
Using induction and Lemmas 1 and 2, the following theorem can be easily proved.

Theorem 3 (DITGDH problem): If the 2-party DDH problem is hard, then DITGDH is also

hard.
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